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General Comments

> Relaxation theories are useful to understand basic
trends and to guide numerical experiments.

Need improve relaxation <= dynamics connection
- “routes to relaxation”

» There is a relation between turbulent relaxation and
staircase formation, BUT:

» That relation is not simple and not fully understood -
multi-stage relaxation scenario ?!

» Indeed, the precise meaning of “staircase” merits some
care.



Re: “Staircases”

» Staircases are a well developed subject
(prior 1972) and appear outside of GFD
realm.

» Interesting and useful analytical models
have been developed. More to the story
than color VG’s

» There is a relationship between staircases
and first order transition patterns.



This Tutorial

» Addresses both relaxation dynamics and
staircase formation, aims to connect these

» Primarily analytical in approach = emphasis on
variety of reduced models

» Primarily, though not exclusively, focused on
applications to GFD, simple drift wave models

» Aims to relate/connect to MFE modelling issues

> Not a review
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Outline

» Basic Concepts — PV Dynamics and QG Flows

» Minimum Enstrophy Relaxation
a) Model — Minimum Enstrophy Relaxation
b) Rationale and Final States
c) Dynamics = Structural Constraints on PV Flux
d) Implications =



» Staircases (emphasis on formation)

a) PV and otherwise

*

b) Singular (Transport Bifurcation) Modulations
a) Phillips, Balmforth and Beyond
b) Return to QG

- length scales, PV mixing, structures
a) Jams and Jamming Waves

- time delay

> Discussion
-- just what is a staircase (apart pretty pics)?
-- open theoretical issues?




Basic Aspects of
PV Dynamics



Geophysical fluids

* Phenomena: weather, waves, large scale atmospheric and oceanic circulations,
water circulation, jets...

* Geophysical fluid dynamics (GFD): low frequency ( @ < Q)

“We might say that the atmosphere is a musical instrument on which one

can play many tunes. High notes are sound waves, low notes are long

inertial waves, and nature is a musician more of the Beethoven than the

Chopin type. He much prefers the low notes and only occasionally plays  (“Turing’s
arpeggios in the treble and then only with a light hand.” —J.G. Charney  Cathedral” )

* Geostrophic motion: balance between the Corlolls force and pressure gradlent

Resuling &7, \ /

Motion \ "1

Pressure force




Kelvin’s theorem - unifying principle

Kelvin’s circulation theorem for rotating system Q
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Drift wave model — Fundamental prototype

* Hasegawa-Wakatani : simplest model incorporating instability
C A
V:EZXV¢+ Vpol
J, :n‘e
\ 2 d 2 2 2y 72
V,.-J +VJ 50 S vorticity: p; EV ¢=-DV, (p—n)+ W'V

V ol nJy==Vp+Vp,

dn, V.J . d
7 +—n|(|)‘2 =0 - density: En :—D||Vﬁ(¢—n)+DOV2n

d
= in inviscid limit] PV conservation E(n—vng) =0

- PV flux = particle flux + vorticity flux N9 s
aL: —(n)==—(0,7)
—> zonal flow being a counterpart of particle flux > i<v2¢>=_i<ﬁ V2¢3>
ot or '
. M ) - (53,)
Hasegawa-Mima | DHkH/a)>>1 > n~g¢) 5,2 \Uro

(4= piV4)+0.0,9=0
dt
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PV conservation

dq

dt

=0

GFD:
Quasi-geostrophic system

2
q=Vy+py
relative  planetary
vorticity vorticity

Plasma:
Hasegawa-Wakatani system

g=n-V'¢
/N
density ion vorticity

(guiding center) (polarization)

Physics: Ay — A(Vz w) >ZF

Charney-Haswgawa-Mima equation

n=n,+n 1 0

_ 1 0 o,
7 H-W > H-M: ——(V?¢—p°¢)— +22J(4, Vi) =0
e wdat( -p.’9) AR
T
a 2 =2 a 2
Q-G: —(V°'w—-L +0—vw + J(w,Vy)=0
~(Vv=Liv)+h—y + JW V')
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PV Transport

Zonal flows are generated by nonlinear interactions/mixing and transport.

In x space, zonal flows are driven by Reynolds stress ; ;
—(V_)=——(0 U, )—u{v
| )= (0.0,) ()
<ﬁycj> = —a—<ﬁx?§y> = PV flux fundamental to zonal flow formation
Inhomogeneous PV mixing, hot momentum mixing (dg/dt=0)

Taylor’s Identity

- up-gradient momentum transport (negative-viscosity) not an enigma

Reynolds stresses intimately linked to wave propagation

Wave-mixing, transport
duality

c.f. Review: O.D. Gurcan, P.D.; J. Phys. A (2015)
real space emphasis



Minimum Enstrophy Relaxation



Examples of Self-Organization Principles

— Turbulent Pipe Flow: (Prandtl — She)

A{vy)

o= —pp—2L UT ~ Uyl = (vy) ~ v Inz

oz

Streamwise Momentum undergoes mixing

The original “profile consistency”
— Magnetic Relaxation: (Woltjer-Taylor)

(RFP, etc) Minimize Ej; at conserved global Hy; = Force-Free RFP profiles

% — PV Homogenization/Minimum Enstrophy: (Taylor, Prandtl, Batchelor, Bretherton, ...)

— PV tends to mix and homogenize

— Flow structures emergent from selective decay
of potential enstrophy relative to kinetic energy

— Shakura-Sunyaev Accretion
— disk accretion enabled by outward viscous angular momentum flux



Observation

- Many commonalities - though NOT isomorphism - of magnetic and

flow self-organization

- Specifically: Taylor Theory and Minimum Enstrophy Theory

Magnetic (JB) Flow (Gl)
concept topology symmetry
process turbulent reconnection PV mixing
players tearing modes, Alfven drift wave turbulence

waves
mean field EMF = (¥ x B) PV Flux = (0-4)
constraint / d’zA - B conservation Dual Cascadel(energy
, conservation)
outcome B-profiles (Zonal) flow




Foundation: Dual Cascade

J
/
J
)
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2D turbulence conservation
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“m, /\ /\< |C

CND
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) ‘\ 3' “' cascading
—> dual cascade (Kraichnan) E(K) I HQ
\
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° |
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» Upshot : Minimum Enstrophy State
(Bretherton and Haidvogel, 1976)
-- idea : final state
-- potential enstrophy forward cascades
to viscous dissipation
-- kinetic energy inverse cascades
(drag?!)
>

-- calculate macrostate by minimizing potential enstrophy ()
subject to conservation of kinetic energy E, i.e.

S(Q+uE)=0 [n.b. can include

topography |
=2 “Minimum Enstrophy Theory”



A Natural Question:

How exploit relaxation theory in
dynamics?



Further Non-perturbative Approach for Flow!

— PV mixing in space is essential in ZF generation.

Taylor identity: <Dyvzé> =—0, <Dy5x>
vorticity flux ~ Reynolds force

Key:

General structure of PV flux?
How represent

—relaxation principles!

non-perturb model 1: use selective decay principle

most treatment of ZF: What form must the PV flux have so as to

-- perturbation theory dissipate enstrophy while conserving energy?

-- modulational instability

(test shear + gas of waves) non-perturb model 2: use joint reflection symmetry

~ linear theory based
Y What form must the PV flux have so as to

-> physics of evolved PV mixing? satisfy the joint reflection symmetry principle
-> something more general? for PV transport/mixing?
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Using selective decay for flux

minimum enstrophy Taylor relaxation
relaxation (J.B. Taylor, 1974)
(Bretherton & Haidvogel 1976)
turbulence 2D hydro 3D MHD
HEMSEryE q_uantlty total kinetic energy global magnetic helicity
dual (constraint)
cascade| dissipated quantity fluctuation potential :
L magnetic energy
(minimized) enstrophy
_ minimum enstrophy state Taylor state
final state
flow structure emergent force free B field configuration
9, 9,
structural approach 8_Q<O:>FE :>Fq a—EM <0=T1,
t t

(Boozer, '86)

e flux? what can be said about dynamics?

—> structural approach (this work): What form must the PV flux have so as to
dissipate enstrophy while conserving energy?

General principle based on general physical ideas = useful for dynamical model ,,



PV flux
- PV conservation

mean field PV: @+@y<uyq>: Voai <q> Key Point:
ot —= form of PV flux I, which
[ : mean field PV flux dissipates enstrophy &

: conserves energy
selective decay

- energy conserved  E= I (8y<2¢>)

E-[war,—Jar, %

2
- enstrophy minimized Q= I%

_ __[5]249)
aa_?__.[ <q>ayrq __.[ ay Lay <Z>JFE

Roreli) T

1 0,(¢)|| general form
:[Fq "5 <¢>ay[” % Léy <¢>ﬂ of PV flux

parameter TBD \<Ux> 22



Structure of PV flux

IINPRE <q>} I H@a X0 @2@}]
g <ux>a[/ [M oy w) ) o)

drlft and hyper diffusion of PV

diffusion parameter calculated by
perturbation theory, numerics... <--> usual story : Fick’s diffusion

relaxed state:

Homogenization of < ) —> consistent with staircase

(o)

~

()

o -

Rhines scale 1, N\/:

0,(4) B
£> [ :zonal flow growth ¢=)| I>L,:wave-dominated

{ < {_:zonal flow damping £ < L,: eddy-dominated

(hyper viscosity-dominated) - )
- Y, 23

characteristic scale /=




What sets the “minimum enstrophy”

* Decay drives relaxation. The relaxation rate can be derived by linear
perturbation theory about the minimum enstrophy state

(9)=4,()+5q(,1) R . [k“ AU +307 8qL (K +/1)J
(#)=8,0)+54(,0) - (v (v.)
0,9, =409, . =;{— 4g,)° +10q, k2 gq;k]
oq(y,1)= 04, exp(t—ia)t+iky) _ (v,) (V)
>0
relaxation

* The condition of relaxation (modes are damped):

8q’" >34

(v.)

= <U > < 3—/12 ZF can’t grow arbitrarily large

the minimum enstrophy’ of relaxation,
= §
related to scale

24

2
7rel>0 - k2> 8qm2_3ﬂu =

(v,)

- Relates q,i, with ZF and scale factor




Role of turbulence spreading

@@

Turbulence spreading: tendency of turbulence
to self-scatter and entrain stable regime % —> Q Q

Turbulence spreading is closely related to PV mixing because the
transport/mixing of turbulence intensity has influence on Reynolds
stresses and so on flow dynamics.

PV mixing is related to turbulence spreading

diti f
- _[<¢>8qu - _-[ 09T, : % Zcr)mre]r;;ﬁ:r;:servation

The effective spreading flux of turbulence kinetic energy

[ T(ve)dy = — f 0y [ (y“”)](xm ( gf")))‘

—~the gradient of 3 (q)/(v,), drives spreading

= the spreading flux vanishes when 9 (q)/(v,) is homogenized



Discussion

* PV mixing «» forward enstrophy cascade «-» hyper-viscosity

- How to reconcile effective negative viscosity with the picture of
diffusive mixing of PV in real space?

* A possible explanation of up-gradient transport of PV due to turbulence
spreading

PV mixing Turbulence spreading
larger < g > - ~ 2 4 Weakerturbulence
— . .

intensity (enstrophy)

! A

| i

I—‘I I I rQ

% I
| T— _— Stronger turbulence
SRNES g - intensity (enstrophy)
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Staircases



Staircases are prominent in French Academia

28



PV staircase

o o PV gradient large
relaxed state: homogenization of ﬁ hg | fl s |
Ux> where zonal flow large

—> Zonal flows track the PV gradient - PV staircase

(9)

-- is a consistent
solution
-- unusual degree

(v,) m of structure

* Highly structured profile of the staircase is reconciled with the
homogenization or mixing process required to produce it.

e Staircase may arise naturally as a consequence of minimum
enstrophy relaxation.



Turbulence drive: R/L,

Some Required Pictures of Self-Organization in France

100 120
Normalized radius: r/p,

— E x B staircase

(GDP, PD et al. 2010)

— driven system
— quasi-periodic E x B shear layers

and V];/]; corrugations

— step-scale = avalanche outer scale
— Not correlated with g

Legion imitating a zonal flow
n.b. 2010 paper

written under UCSD
by-line ...

30



How make a step? = Inhomogeneous PV mixing

mechanism for zonal flow formation

, <q> <V,>
O(PV)->o(Vy)>oy)>v=Vxy y
sicle - velocity T
mixing{

region
\ N.B. for ITG turbulence:
PV >a %+ Ve
equator-

Mclntyre 1982 OPV =0 — 5(%) = _5(V2¢)

Dritschel & Mclntyre 2008 _
and shear flow formation



“What is the difference between a staircase and
a nonlinear wave, and why would anyone care?”

- Senior UCSD Experimentalist



This is a staircase: This is a nonlinear wave:

i.e. clear scale ordering
W < Agp K Lgs =2 barrier
T c.f. Fujisawa, et al, mid 90’s et. seq.

step layer width
- developed modulational wave

N.B.:

e Also mechanism:
— Staircase -2 first order
— Wave - second order

* Beware: both tilt eddys, shear, etc.
33



» Staircases are much more ubiquitous than in

GK turbulence

Stably stratified turbulence (late ‘60s)
(ocean surface layer)

Thermohaline convection

Driven QG

MHD (magneto-convection, magnetic buoyancy)

All involve formation of sharp gradient steps, by
mixing processes.

Not all involve “shear suppression”, etc.

- General phenomena



Thermohaline Layer Simulation (Radko, 2003)

Staircase
(@) (b) (c)

(d) (e) N

P total P total P total

Single layer

Sharp interface formed
colors = salt concentration

Staircase formed, followed
by ‘condensation’ to single layer
- Merger events

35



e What s a staircase?
e Cf Phillips’72:

(other approaches possible)

SHORTER CONTRIBUTION

Turbulence in a strongly stratified fluid —is it unstable?
O. M. PHILLIPS*

(Received 30 July 1971; in revised form 6 October 1971; accepted 6 October 1971)

Abstract—1It is shown that if the buoyancy flux is a local property of turbulence in a stratified fluid
that decreases sufficiently rapidly as the local Richardson number increases, then an initially linear
density profile in a turbulent flow far from boundaries may become unstable with respect to small
variations in the vertical density gradient. An initially linear profile will then become ragged; this

possible instability may be associated on occasions with the formation of density microstructure in
the ocean.

* Instability of mean + turbulence field requiring:
613, /6Ri < 0; flux dropping with increased gradient
I, = —D,Vb, Ri = gVb/(v")?

* Obvious similarity to transport bifurcation
36



In other words: Configuration instability

of profile + turbulence
b intensity field

gradient ‘ Buoyancy

\\ profile
- L

——— — I APt
intensity m

Intensity
field

Some resemblance to Langmuir turbulence

i.e. for Langmuir: caviton train JUUL
- : mp ¥
on

on/n= —¢ 37




* OK:lIsthere a “simple model” encapsulating the ideas?

* Balmforth, Llewellyn-Smith, Young 1998 - staircase in

stirred stably stratified turbulence

e |dea: 1D K — € model

— turbulence energy; with production, dissipation spreading
+

— Mean field evolution

1

— Diffusion: V L, ~ (6)z L, 4

— L, 5 =2 mixing length ?!



e Whatis lmbc ?

2 2 2
1/15=1/1+1/ 15, _[System mixes at steady state

, on scale of energy balance
l,, : ~ Ozmidov scale

~ balance of buoyancy production vs. dissipation

. ~3 ~ e
i.e. V°/l ~g(Véb) NBib D el S 1L

&b ~ (V/(V/1))ob [0z ﬁ
> 1/loy = (bz/€)"* e ~ (V?) energy
or V(I)/I~N = [,

=» smallest “stratified” scale



The model

D = 61/21
» Mean Field: 112 =1/ 12 +1/1%,
atb — az(Dazb) e =(V*)

N.B.: Not a typo! No residual molecular diffusion!

 Fluctuations:

spreading Production g(Vép)

3 forcing F ~ +/e (u3 —e)
d;e = 0,Dd,e —le20,b — 7 + F
A dissipation

N.B. 0, (f le — d?]) = 0 (energy balance)



e Some observations

— No molecular diffusion branch (“neoclassical H-mode”)

Steep b, balanced by dissipation, reduced [

— Step layer set by turbulence spreading (N.B. interesting

lesson for case when D,,,, feeble —i.e. particles)

— Forcing acts to initiate fluctuations, but production

(~ b,) is the main driver
— Gradient-fluctuation energy balance is crucial

— Can explore stability of initial uniform e, b, field = akin

modulation problem



The physics: Negative Diffusion

[y

i “H-mode” like branch
-7 (i.e. residual collisional diffusion)
is not input
- Usually no residual diffusion
- ‘branch’ upswing = nonlinear

-
- =

=> ‘negative diffusion’

Vb processes

Instability driven by local transport bifurcation

0T, /0Vb <0 Negative slope
Unstable branch

Feedback loop T, L D2 Vb M D1V DT 4 Critica.l glement:
T | [ = mixing length

42




e Some Results
Io(a)
- O N ey )
0.6} ‘f Y anes S neal
i
04} Il 10g
' 1 i1 AN AAN i it Al s \

oot DAL
o 200 %00 1200 1600 2000

(b)
14
12} 10g
10}
08} | O O O O

/ \\
0s} "
IOQf‘,” .

04t ) : ' ‘ f
ot/ UL,
S T 2000

-
-

Plot of b, (solid) and e (dotted) at
early time. Buoyancy flux is

dashed = near constant in core

Later time = more akin
expected “staircase pattern”.

Some condensation into larger

scale structures has occurred.
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e Time Evolution

(x10%

10

(%)

b, (X 10%)

Time progression shows merger
process — akin bubble

competition for steps

Suggests trend to merger into

fewer, larger steps

Relaxation description in terms of
merger process!? i.e. population

evolution

Predict/control position of final
large step?

44



To QG
e PV staircases observed in nature, and in the unnatural (i.e. codes)

 Formulate ‘minimal’ dynamical model ?! (n.b. Dritschel-McIntyre 2008

does not address dynamics)
Observe:

1D adequate: for ZF need ‘inhomogeneous PV mixing’ + 1 direction of

symmetry

e Best formulate intensity dynamics in terms potential enstrophy € = (§?)

* Length? : an<Q>/ay ~ 673 (production-dissipation balance)

¢ >~ (G2/Q)/BY ~ Lnies



Model

at(q) — ayDé‘y(q) Dissipation
" Mean Field
2 3
0.€ — 0,D0,¢ = D(0,(q))” — €2 + F< Forcing
\ [ N ion
Where: Spreading Product
Fluctuations
1 1 1 2
AT lin = €/(0,(q))
D ~ [%\/e

2
0¢ (% + E) = 0, to forcing, dissipation



Aside

e What of wave momentum?

* PV mixing €2 Dd,(q)

So > (V§) > 9,(V,V,) > RS.
* But:
RS. &2 (kyky,) €2V, E
=» Feedback:

(@ P> 1L >el D

A (Production) :
|



Alternative

. o2 1 1 N
Note: [ = 1+1/l§h9 a7 e (lr ~ 1)

 Reminiscent of weak turbulence perspective:

72)awr wy = —ky(q)' /k?
D=Dpv=ZEw2+Aw2 -
AL Aw;, ~ kT

Ala’ Dupree’67:

1 k2((@)")° e

Steeper (q)’ quenches diffusion



, X
g €2

l(z) N2
1+->q)")

* w vs Aw dependence gives D,,, roll-over with steepening

Dpv ~

* Rhines scale appears naturally
* Recovers effectively same model
Physics:

@D “Rossby wave elasticity’ (MM) > steeper (q)’ = stronger

memory

@ Distinct from shear suppression



Numerical Results



grad Q

t=1.5,

scaled down to 1/40

ecollapse of two steps into one
eappears to proceed to infinity
*eps_0=0.1
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gradQ shown as a
contour plot in preceding
VG



Contour plot shows grad Q
Q, € fixed at boundaries
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What of Regimes with Avalanching?

- Jams and Jamitons



Highlights

Observation of ExB staircases

— Failure of conventional theory of avalanches

Turbulence drive: R,

(emergence of particular scale???)

80 100 120 140 160 180
Normalized radius: r/ P,

Model extension from Burgers to telegraph

Or6T + AN6T 00T = x2026T
= CORST+ 0,0T + ATO,6T = x20°6T

finite response time - like drivers’ response time in traffic

Analysis of telegraph egn. predicts heat flux jam %

05
o
- scale of jam comparable to staircase step o k —

02

| LA L L L
0l W RRRRR AR R

0km l‘l Zlh liﬂ llll Sén position



Towards a model

e How do we understand quasi-regular pattern of ExB staircase, generated from
stochastic heat avalanche???

e Anidea: jam of heat avalanche

corrugated profile <> ExB staircase

- accumulation of heat increment

—> corrugation of profile occurs — stationary corrugated profile
by ‘jam’ of heat avalanche flux

* > time delay between Q[6T] and 6T
is crucial element

like drivers’ response time in traffic

e How do we actually model heat avalanche ‘jam’ ??? = origin in dynamics?

N.B. Barenblatt first proposed relation of time delay to layering



£o

Traffic jam dynamics: ‘jamiton’

e A model for Traffic jam dynamics - Whitham

pt + (Fm)m =0

1 U P -> car density
Ve + VU = — {v - Vi(p) + ;pm}

U - traffic flow velocity

v
- Instability occurs when 7> V/(ngo'z) Vip) — ;pm - an equilibrium traffic flow
_ 2 ,2 . . e
Desr=v —T1pgVy~ <0 -> clustering instability T - driver' s response time

- Indicative of jam formation

e Simulation of traffic jam formation

% Jamitons in Traffic Flow t=340s http://math.mit.edu/projects/traffic/
q

- Jamitons (Flynn, et.al., " 08)

JLJbU n.b. LV.P. & decay study

L L L
- B N -~ LU L L.

0 km 1km 2km 3km 4 km 5km position



Heat avalanche dynamics model (' the usual’)

Hwa+Kardar > 92, P.D. + Hahm ’ 95, Carreras, et al. ’ 96, ... GK simulation, ... Dif-Pradalier 10

e 5T :deviation from marginal profile - conserved order parameter

e Heat Balance Eq.: 0,6T + 0,Q[6T] = 0 - up to source and noise

e Heat Flux Q[6T] ? - utilize symmetry argument, ala’ Ginzburg-Landau

- Usual: = joint reflectional symmetry (Hwa+Kardar’92, Diamond+Hahm ’95)

Q = Qo(éT
~ 0T ++ —0T M
= Z0T? — x20,0T + x4026T
\ Xr < —X 2

hyperdiffusion

lowest order - Burgers equation 0T + AT 00T = x2020T



An extension of the heat avalanche dynamics

e An extension: a finite time of relaxation of @ toward SOC flux state

0;Q = —% (@ — Qo(dT)) Qo[0T] = %5T2 — x20,0T + Xx4056T

(Guyot-Krumhansl)

- In principle  7(6T,Qo) <=> large near criticality (~ critical slowing down)

i.e. enforces time delay between 67" and heat flux Soften flux—gradient relation

N.B.: Contrast quasi-linear theory!

* Dynamics of heat avalanche: n.b. model for heat evolution

BT + AT 80T = x2026T — x4026T — 7826T diffusion - Burgers - Telegraph

- Burgers 1

(P.D. + T.S.H. " 95) . ,
New: finite response time

- Telegraph equation



Relaxation time: the idea

e What is ‘ 7’ physically? - Learn from traffic jam dynamics

e A useful analogy:

heat avalanche dynamics traffic flow dynamics
temp. deviation from marginal profile local car density
heat flux traffic flow
mean SOC flux (ala joint relflection equilibrium, steady traffic flow
symmetry)
» heat flux relaxation time driver’s response time

- driver’s response can induce traffic jam
- jam in avalanche - profile corrugation - staircase?!?

- Key: instantaneous flux vs. mean flux



Analysis of heat avalanche dynamics via telegraph

e How do heat avalanches jam? 0T,

e Consider an initial avalanche, O U
with amplitude §7},
propagating at the speed vy = AdT)

— turbulence model dependent
e Dynamics:
80T + 198, 0T = x2026T — x4026T — T026T
X2
ulse \ \/ ‘Heat flux wave’: \/
P telegraph - wavy feature

two characteristic propagation speeds

- In short response time (usual)
/\ /\/\/\_) heat flux wave propagates faster
X - In long response time, heat flux wave
/UO 2

becomes slower and pulse starts overtaking.
What happens???



Analysis of heat avalanche jam dynamics

e In large tau limit, what happens? - Heat flux jams!!

e Recall plasma response time akin to driver’s response time in traffic dynamics

* negative heat conduction instability occurs (as in clustering instability in traffic jam dynamics)
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n.b. akin to negative viscosity instability of ZF in DW turbulence

instead ZF as secondary mode in the gas of primary DW

=>» Heat flux ‘jamiton’ as secondary mode in the gas of primary avalanches



Analysis of heat avalanche jam dynamics

e Growth rate of the jamiton instability
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e Threshold for instability

x4k2> nb. 1/7=1/7[¢]

X2 — clustering instability strongest near criticality
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— critical minimal delay time

e Scale for maximum growth
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2 . . .
> staircase size, A7, . (0T) » 6T from saturation: consider shearing



Scaling of characteristic jam scale

e Saturation: Shearing strength to suppress clustering instability

Jam growth = profile corrugation - ExB staircase - U}ng
A

— estimate, only

T 1 /
—> saturated amplitude: 0 ~ X4
-

T; VthiPi

e Characteristic scale
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- Geometric mean of p; and /x27 : ambient diffusion length in 1 relaxation time

- ‘standard’ parameters: A ~ 10A,



Discussion

* “Negative diffusion” / clustering instability common to

both Phillips and Jam mechanisms

Phillips 2 6I'/6Vb < 0 = T nonlinearity
Jam 2 x; —V§ Tgeny < 0> 74 physics
~. Negative diffusion a general staircase forming mechanism

=» Staircase formation is a generic form of secondary
pattern instability in gradient-driven turbulence. Should be

treated on equal footing with zonal flow, streamer, ...

Fluctuation intensity profile of great interest



Discussion

e Similar to familiar transport bifurcation in 6I'/oVb < 0

* Different in no “second state” supported by collisional

transport
e Sets step width via turbulence spreading
* More general than V5 suppression scenario

e Jam mechanism:
— T, is key quantity

— how do nonlinear couplings scatter flux? is central question



Re: Relaxation

* Relaxation theories generally predict “smooth” states

* |nstructive to look at selective decay constraint on flux
 These can be modulationally unstable to staircases, etc.

* |s actual final state determined by structural merger process?
* Prediction ?! — barrier location?

* Generalissue is type of nonlinear process in play:

— Cascading
— Modulational instability c.f. Mcwilliams ‘84
- Stage 1 : cascading
— Bubble competition - Stage 2 : structure interaction

=» Is relaxation a multi-state process ??



Open Questions

e Staircase structure with spreading and residual diffusion?

 Staircase structure in inhomogeneous system =2 meso-

micro interaction, profiled forcing?

 Multi-field staircase model (cf. experience with transport
bifurcation = difficult!)

* Propagating solutions  key: transit vs merger rate
* Noise effects (i.e. non-stationary forcing in time)
* Net flux drive

— Is relaxation a multi-stage process? Characterization?



Approach ?!

e Staircase solutions require self-consistent treatment of gradient

But

e GK, full toroidal geometry etc. all seem overkill and unnecessary to

explore fundamentals; pain/gain 2 oo

* Especially important to ‘turn down’ neoclassical transport, collisional

flow damping to reveal strong nonlinearity
So
e Simplify model:
— Darmet ?

— Flux driven fluid models ?!

N.B. These have performed well in transport bifurcation studies



Bring on the prey...






A Simpler (?!) Problem:
= Turbulent Pipe Flow



* Essence of confinement:

— given device, sources; what profile is achieved?

— 15 =W/Py

* Related problem: Pipe flow (turbulent)

AP - pressure drop

@O

[

1004

APra? = pV22mal

Balance: momentum transport to wall Re

(Reynolds stress) vs AP
_ 2aAP/l

-~ 1/2pu?

=>» Flow profile



(Core)

u
inertial sublayer = logarithmic (~ universal)
—> viscous sublayer (linear)
0 - Problem: physics of ~
universal logarithmic profile?

Wall

* Prandtl Mixing Length Theory (1932)

— Wall stress = pV.2 = —pvy Ou /0x

N
eddy viscosity

— Absence of characteristic scale =2
vr ~ Vix { x = mixing length, distance from wall

u ~ Vn(x/xo) Analogy with kinetic theory ...

Vr =V — X, Vviscous layer 2 xy, = v/V,



Some key elements:

Momentum flux driven process

e Turbulent diffusion model of transport eddy viscosity
* Mixing length:

~ X =2 macroscopic, eddys span system

- ~ flat profile
e Self-similarity in radius
 Cut-off whenvy =v

 Reduce drag by creation of buffer layer i.e. steeper gradient than

inertial sublayer (by polymer)



Structural MFT:

- The question of Dynamics brings us to mean field theory (c.f. Moffat ’78 and an
infinity of others)

- Mean Field Theory — how represent (& x B) ?

— how relate to relaxation ?

- Caveat: Perturbative MFT assumes fluctuations are small and
quasi-Gaussian. They are often NOT

- Structural Approach (Boozer): (plasma frame)
(E) =n({J) + (S) => ‘something’

(8) conserves Hy Note this is ad-hoc, forcing (S) to

(S) dissipates Ej, fit the conjecture. Not systematic.



Now

Oy Hyr = —2cn / d°z(J - B) — 2c / d*z(S - B)

B
(S) — ﬁv Iy
=> Helicity flux

. B? - J)-B
Bt/ddxs—wz—[dsa:[nﬂ—l"ﬂ-v(22 }

SO
Ly =-AV(J)/B)
— simplest form consistent with Taylor
— turbulent hyper-resistivity A = A[(B?)] - ‘parameter’

— Relaxed state: V(J/B) —+ 0 homogenized current



